Group actions on trees and dendrons

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Actions on Trees

For this paper, we will define a (non-oriented) graph Γ to be a pair Γ = (V,E), where V = vert(Γ) is a set of vertices, and E = edge(Γ) ⊆ V × V/S2 is a set of unordered pairs, known as edges between them. Two vertices, v, v′ ∈ V are considered adjacent if (v, v′) ∈ E, if there is an edge between them. An oriented graph has edge set E = edge(Γ) ⊆ V × V , ordered pairs. For an edge v = (v1, v2) i...

متن کامل

Deformation and rigidity of simplicial group actions on trees

We study a notion of deformation for simplicial trees with group actions (G{ trees). Here G is a xed, arbitrary group. Two G{trees are related by a deformation if there is a nite sequence of collapse and expansion moves joining them. We show that this relation on the set of G{trees has several characterizations, in terms of dynamics, coarse geometry, and length functions. Next we study the defo...

متن کامل

Quasi-actions on Trees and Property (qfa)

We prove some general results about quasi-actions on trees and define Property (QFA), which is analogous to Serre’s Property (FA), but in the coarse setting. This property is shown to hold for a class of groups, including SL(n, Z) for n ≥ 3. We also give a way of thinking about Property (QFA) by breaking it down into statements about particular classes of trees.

متن کامل

Group Actions on Partitions

We introduce group actions on the integer partitions and their variances. Using generating functions and Burnside’s lemma, we study arithmetic properties of the counting functions arising from group actions. In particular, we find a modulo 4 congruence involving the number of ordinary partitions and the number of partitions into distinct parts.

متن کامل

Group Actions on Posets

In this paper we study quotients of posets by group actions. In order to define the quotient correctly we enlarge the considered class of categories from posets to loopfree categories: categories without nontrivial automorphisms and inverses. We view group actions as certain functors and define the quotients as colimits of these functors. The advantage of this definition over studying the quoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1998

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(97)00087-6